

MACHINES ÉLECTRIQUES

TD 5: Transformateurs

1 Transformateur monophasé

Un transformateur monophasé porte les indications suivantes sur sa plaque signalétique :

- $S_n = 2200 \text{VA}$, rendement 95 %, Primaire $V_{1n} = 220 \text{ V}$, Secondaire $V_{2n} = 127 \text{ V}$
 - 1. Calculer le courant primaire nominal : I_{1n}
 - 2. Calculer le courant secondaire nominal : I_{2n}
 - 3. Le rendement est précisé pour une charge absorbant le courant nominal sous tension secondaire nominale et présentant un facteur de puissance $\cos \varphi = 0, 8$. Calculer la valeur des pertes dans le transformateur dans ces conditions.
 - 4. Représenter un schéma équivalent ramené au secondaire du transformateur en faisant apparaître les éléments classiques exposés dans le cours
 - 5. En supposant qu'au régime nominal les pertes sont uniformément réparties entre pertes fer et pertes Joules, calculer alors la valeur de tous les éléments résistifs du schéma.
 - 6. La tension secondaire à vide de ce transformateur vaut $V_0 = 133$ V. Calculer alors le rapport de transformation : m. En utilisant la formule simplifiée donnant la chute de tension $\Delta V_2 = V_0 V_2$ au point nominal, calculer la valeur de l'inductance de fuite ramenée au secondaire du transformateur.
 - 7. En utilisant toujours la formule de la question 6, calculer la valeur de la tension secondaire correspondant à une charge absorbant la moitié du courant secondaire nominal, toujours avec un $\cos \varphi = 0, 8$
 - 8. Calculer alors le rendement du transformateur lorsqu'il débite sur une charge absorbant la moitié du courant nominal, toujours avec un $\cos\varphi=0,8$

2 Transformateurs en cascade

Un ensemble de distribution d'énergie électrique sous tension sinusoïdale à 50 Hz est représenté, en schéma monophasé équivalent, sur la figure 1. Les transformateurs représentés sont considérés comme parfaits et les rapports de transformations connus : $m = 2 \times 10^{-3}$, m' = 100. Les éléments d'imperfection des

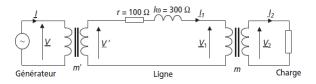


FIGURE 1 -

transformateurs et de la ligne sont ramenés à la résistance r et à l'inductance l. La charge consomme, par phase, une puissance de 500 kW sous 230 V et avec un facteur de puissance $\cos\varphi = 0.8$ arrière.

- 1. Calculer la valeur du courant I_2 .
- 2. En déduire la valeur du courant I_1 et calculer la valeur de V_1 .
- 3. Représenter un diagramme de Fresnel faisant apparaître toutes les grandeurs de la maille centrale.
- 4. Calculer alors la valeur de la tension $V^{'}$ en faisant une hypothèse de colinéarité des tensions $\underline{V_1}$ et $\underline{V}^{'}$.
- 5. En déduire la valeur de la tension V nécessaire à assurer 230 V en bout de ligne.
- 6. Reprendre les deux dernières questions en faisant un bilan de puissances actives et réactives. Conclure sur l'hypothèse faite à la question 4.

3 Transformateurs en parallèle

Afin d'alimenter une charge demandant plus de puissance que ne peut en fournir un transformateur A, on associe à celui-ci un transformateur B en parallèle. Le schéma de la figure 2 fait apparaître cette mise en parallèle ainsi que les éléments d'imperfections des deux transformateurs (les éléments correspondant au fonctionnement à vide ne sont pas pris en compte dans cet exercice). On notera que les deux transformateurs

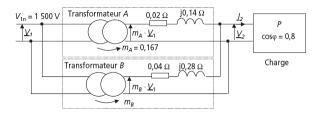


Figure 2 -

présentent les puissances apparentes nominales suivantes : $S_{An}=24$ kVA et $S_{Bn}=12$ kVA

- 1. Quelle relation doit exister entre les rapports de transformations m_A et m_B pour qu'aucun transformateur ne débite de courant à vide, c'est-à-dire lorsque la charge n'est pas présente sur cette installation?
- 2. Calculer les courants primaires nominaux I_{A1n} et I_{B1n} .
- 3. En déduire les courants secondaires nominaux I_{A2n} et I_{B2n} .
- 4. Calculer alors la tension secondaire nominale V_{2n} de chaque transformateur en utilisant la formule classique donnant la chute de tension secondaire. Commenter ce résultat. Que se passerait-il si ces deux valeurs n'étaient pas identiques?
- 5. Calculer la valeur du courant total secondaire nominal I_{2n} que présente cette installation. Calculer alors la puissance apparente nominale de cette association de transformateurs.
- 6. Calculer le rendement du système sur une charge absorbant le courant nominal avec un facteur de puissance de 0,8.
- 7. Calculer la valeur du courant débité par chaque transformateur pour un courant total $I_2 = \frac{I_{2n}}{2}$